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Abstract 

The unprecedented rate of extinction calls for efficient use of genetics to help conserve 

biodiversity. Several recent genomic and simulation-based studies have argued that the field of 

conservation biology has placed too much focus on conserving genome-wide genetic variation, 

and that the field should instead focus on managing the subset of functional genetic variation that 

is thought to affect fitness. Here, we critically evaluate the feasibility and likely benefits of this 

approach in conservation. We find that population genetics theory and empirical results show that 

conserving genome-wide genetic variation is generally the best approach to prevent inbreeding 

depression and loss of adaptive potential from driving populations towards extinction. Focusing 

conservation efforts on presumably functional genetic variation will only be feasible occasionally, 

often misleading, and counterproductive when prioritized over genome-wide genetic variation. 

Given the increasing rate of habitat loss and other environmental changes, failure to recognize the 

detrimental effects of lost genome-wide genetic variation on long-term population viability will 

only worsen the biodiversity crisis.  

Introduction 

Decades of theoretical (1) and empirical (2, 3) research suggest that conserving genome-wide 

genetic variation improves population viability. Maintaining genetic variation, adaptive potential 

(see Glossary), and avoiding inbreeding depression are central motivations for maintaining large, 

connected natural populations. Principles of genetics and evolution have therefore played a large 

role in conservation biology since its inception (4, 5). The genomics revolution has inspired 

biologists to leverage genome analysis to advance conservation beyond what was possible with 

traditional genetics. Numerous studies have sequenced genomes of non-model organisms of 

conservation concern to understand population history, inbreeding depression, and the genetic 

basis of adaptation. A particularly exciting area of research has been to determine when and how 

functional genetic information can advance conservation. 

Several recent studies suggest that too much emphasis has been placed on genome-wide 

genetic variation in conservation biology. For example, persistence of small populations for long 

periods of time despite low genetic variation, and the collapse of the Isle Royale wolf population 

after the infusion of genetic variation via immigration, have been interpreted as a challenge to the 

idea that genetic variation generally increases population viability (6-12).  Additionally, a weak 

relationship between conservation status and genetic variation has been used to argue that genome-
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wide (presumably neutral) genetic variation is of little importance to conservation (11). Several 

authors have thus advocated for an approach that focuses on functional genetic variation that is 

thought to directly affect fitness (including minimizing deleterious genetic variation) in place of 

the traditional emphasis on conserving genome-wide genetic variation (6-8, 11). 

Here, we evaluate the theoretical and empirical basis of this challenge to the importance of 

genome-wide genetic variation and show that its premise is inconsistent with population genetic 

theory and empirical findings. While it is clear that functional genetic information can advance 

conservation, deemphasizing the maintenance of genome-wide genetic variation would increase 

the extinction risk of threatened populations. 

1. Is genetic variation predictive of inbreeding and inbreeding depression? 

Inbreeding depression is thought to be driven mainly by homozygous and identical-by-descent 

deleterious, partially recessive alleles (13), with lethal and small effect deleterious alleles 

contributing substantially (14). The constant input of new deleterious mutations (15-19) makes 

inbreeding depression a ubiquitous phenomenon that can push populations toward extinction (2, 

20-23). One of the foundational predictions of theoretical population genetics is that the rate of 

loss of heterozygosity (H) per generation (D�" =1/2Ne) is identical to the rate of increase in mean 

individual inbreeding (F), which is D�$=1/2Ne (24). �" is therefore expected to be entirely 

predictive of �$ (24-29). 

A more difficult, but crucial question is whether genome-wide genetic variation (p) is 

predictive of inbreeding depression. Deleterious alleles are lost in small populations due to 

selection and genetic drift (30, 31), but they are also more often expressed in homozygotes in 

smaller populations due to inbreeding. Selective purging of large effect deleterious alleles 

following inbreeding combined with genetic drift may therefore result in low inbreeding load and 

little inbreeding depression in the most highly inbred populations with the lowest p. However, the 

presence of purging does not imply that high fitness is maintained in small populations with low p. 

Population genetics theory predicts that larger populations will have higher neutral (24) 

and deleterious genetic variation (32, 33). This is illustrated in Fig. 1, where simulated large 

populations have higher p (24) and higher inbreeding load (32-34) arising from segregating 

partially recessive deleterious alleles. These simulations assume empirically supported models of 

fitness and dominance (h) effects (SI Appendix). Smaller populations have lower p due to genetic 
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drift, and fewer lethal equivalents due to genetic drift and purging. However, despite having fewer 

lethal equivalents, chronically smaller populations have lower mean fitness due to partially 

recessive deleterious alleles being expressed following inbreeding, and some reaching high 

frequency or fixation (i.e., high drift load). Therefore, a negative relationship is expected between 

p and drift load for populations at mutation-drift-selection equilibrium. 

Equilibrium levels of p and drift load are not expected in populations with fluctuating 

population size or immigration rate. A common scenario with high conservation relevance is 

isolated populations that have experienced recent bottlenecks. The simulated data in Fig. 2 shows 

that genome-wide p declines over time following a bottleneck, as expected from classical theory 

(24) (Fig. 2A). This pattern is paralleled by lethal equivalents (Fig. 2B) owing to the loss of 

deleterious alleles via genetic drift and purging of deleterious alleles expressed in homozygotes 

due to inbreeding (30, 31). However, the deleterious alleles remaining after a bottleneck often go 

to high frequency or fixation. This results in individuals being homozygous for increasingly more 

deleterious alleles (higher drift load, Fig. 2C) as p declines inexorably during a sustained 

bottleneck, the same pattern expected for small populations at equilibrium (Fig. 1). It is notable, 

though, that p, inbreeding load, and drift load can change at substantially different rates following 

a bottleneck. For example, drift load can become quite high before p declines substantially 

following a bottleneck (Fig. 2A, 2C). However, small populations that already have low p are also 

expected to have low mean fitness due to ever-increasing drift load, which demonstrates that p is a 

good indicator of drift load and mean fitness. Occasional immigration can be sufficient to maintain 

high p and low drift load in small populations (Fig. 2). This is one reason why maintaining 

connectivity is a priority in conservation biology, and why genetic rescue is an effective tool for 

managing small, isolated populations (30, 35, 36).  

Empirical data show that purging does not eliminate the extinction threat posed by 

inbreeding. Pedigree-based studies have yielded mixed results with regard to purging, with 

typically only a small portion of inbreeding depression being removed after sustained inbreeding 

in small populations (37-39). Analyses of 60 genomes from seven ibex species found that species 

which went through the most severe bottlenecks had more deleterious alleles (40). Alpine ibex, 

which were once reduced to 100 individuals, had fewer highly deleterious alleles but more mildly 

4 
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deleterious alleles compared to Iberian ibex (bottleneck size 1,000 individuals). Empirical genetic 

data suggest small populations have higher drift load (40-42) which has resulted in lower 

population growth in populations with lower genetic variation (2, 3). In agreement with 

theoretical expectations outlined above, these data suggest that purging is insufficient to maintain 

high fitness in the face of strong genetic drift and inbreeding. Thus, the presence of genomic 

signatures of purging should not be taken as evidence for the absence of inbreeding depression, or 

for demographic stability of small populations. 

The relationship between p and fitness is obviously complicated, particularly immediately 

after a bottleneck (Fig. 2). Populations with the lowest p and highest inbreeding will also have the 

lowest inbreeding load on average due to reduced deleterious genetic variation via genetic drift 

and purging. However, these same genetically depauperate populations will typically have lower 

fitness than larger, genetically diverse populations on average due to ever-increasing drift load 

(Fig. 1 & 2). The bottom line is that reduced fitness is generally expected in small, isolated, 

genetically depauperate populations due to inbreeding depression and the accumulation of drift 

load, and that maintaining genetic variation and population connectivity will increase long term 

viability. 

2. Is genome-wide genetic variation predictive of adaptive potential? 

The ability of populations to adapt to changing environmental conditions (adaptive potential) is 

fundamental for persisting through environmental change (43, 44). A core insight from theoretical 

genetics is that adaptation requires additive genetic variance (Va) for the selected trait(s) (45). A 

lack of Va can limit a population’s response to selection and eventually lead to extinction (43, 44, 

46). As with other types of genetic variation, Va is affected by mutation at loci affecting the trait, 

selection, migration, and genetic drift (47). We therefore expect from first principles that larger 

populations will have higher p and higher Va than small populations on average (Fig. 1), and thus 

that p should be correlated with Va. Despite strong theoretical support, determining the strength 

and importance of this relationship in real populations, especially those of conservation concern, 

has generated longstanding controversy (48). 

Basic population genetic theory shows that population size and connectivity play major 

roles in determining Va, and thus adaptive potential. Isolated populations below a certain size 

should lose Va due to genetic drift more rapidly than it is replenished via mutation (47). 

5 
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Additionally, recently bottlenecked populations that have lost p will eventually also lose Va and 

evolutionary potential in the absence of immigration (Fig. 2). However, while the eventual 

reduction in Va in small populations is inevitable, the initial effects of a bottleneck on Va can be 

complex. Recently bottlenecked populations may show decreases, stability, or even short-term 

increases in Vadue to the conversion of dominant or epistatic variance into Va as allele frequencies 

change due to genetic drift (49-51). This potential conversion of nonadditive to additive variation 

in bottlenecked populations is highly stochastic across traits and populations, and is one of the 

processes that can cloud the relationship between molecular and quantitative trait variation (52). 

Nonetheless, the two important takeaways are: 1) although bottlenecks can complicate the 

prediction of declining Va for any given trait in small populations, Va will be reduced on average, 

especially for traits with primarily additive inheritance; and 2) eventually, the inexorable decline in 

p in very small populations means that all small populations will eventually lose Va and their 

ability to adapt to environmental change. Adaptive potential in such populations will be severely 

limited unless Va is replenished by new mutations or migration from differentiated populations 

(35) (Fig. 2). 

The hypothesis that small populations harbor less Va has been tested empirically in both 

laboratory and field settings. Most experimental studies show declines in Va and weaker responses 

to selection in small populations or following bottlenecks (53-55). On the other hand, field studies 

often find a weak association between Va and genome-wide genetic variation when comparing 

across populations (48, 56); this weak relationship is likely due to a combination of factors, none 

of which refute the two takeaways described above. 

As discussed above, empirical results suggest that Va may initially increase after a 

bottleneck due to the conversion of epistatic and dominance variance to Va (50, 57), and then 

decline after substantial inbreeding accumulates. Further, Va is expected to vary among traits and 

populations depending on genetic architecture, mutation rate, and the mode and history of 

selection. In practice, most studies are unable to account for these factors and are generally only 

able to assess a few traits per species/population. Estimates of Va for each trait are also typically 

based on a modest number of families. Although the number of traits, populations, and species 

studied has increased, determining the total Va for fitness in a given population of conservation 

concern is not an attainable goal. Additionally, the vast majority of the best-characterized species 

with respect to Va in the wild (i.e., most of the species included in (48, 56) meta-analyses) are 
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common. The species and populations in which the relationship between Va and genetic variation 

is expected to be strongest, namely, declining species of conservation concern, tend to be most 

difficult to characterize. 

Arguably the most important point is that the loss of genetic variation in small and/or 

bottlenecked populations is inevitable and will eventually lead to reduced Va and reduce adaptive 

potential, regardless of short-term and stochastic outcomes. Isolated populations that remain small 

are unlikely to recover substantial Va due to the slow rate of mutation and the counteracting loss of 

variation to genetic drift, and the lack of adaptive potential is problematic for long term viability 

(43, 44, 47). 

3. What is the relationship between genome-wide genetic variation and population viability? 

The central question regarding the role of genetic variation in conservation is whether populations 

with lower � are less likely to persist. Genetic effects on the persistence of a particular population 

are difficult to predict with certainty because there are many factors involved that are difficult to 

evaluate, including mating system and demographic history (32, 33), current and future 

environmental conditions (58), and the extent to which soft selection versus hard selection 

predominate (59, 60). Additionally, the highly stochastic demography of small populations, which 

is exacerbated by inbreeding depression (61), means that widely divergent outcomes can be 

expected across populations with the same environmental, demographic, and genetic starting 

conditions. However, theoretical empirical studies have yielded broadly applicable insights into 

the effects of genetic variation and inbreeding on population viability.    

Population genetics theory predicts that small, isolated populations with low genetic 

variation are more likely to go extinct due to genetic effects than larger, more genetically diverse 

populations under empirically supported mutational assumptions (19, 22, 23, 62). De novo 

mutations following a bottleneck are expected to cause eventual extinction of very small, 

genetically depauperate populations via mutational meltdown (SI Appendix Fig. S1) (19). The 

average time to extinction is shorter under the more realistic scenario where bottlenecked 

populations carry deleterious mutations at the outset (Fig. 3). However, the extinction rate depends 

strongly on bottleneck duration, with longer restrictions conferring increased extinction due to 

both demographic stochasticity and the constant increase in drift load. Short-lived bottlenecks are 

one scenario where viability may sometimes be higher for historically smaller, less genetically 

diverse populations that have fewer deleterious alleles at the outset of the bottleneck due to 

7 
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historical genetic drift and purging (Fig. 1, 3A, 3B). However, this assumes inbreeding depression 

is the only genetic challenge operating, and simultaneous selection caused by environmental 

change may reverse this relationship. Longer bottlenecks in isolated populations are expected to 

result in very high extinction rates due to mutational meltdown regardless of the abundance of 

deleterious alleles at the outset (19) (Fig. 3C). 

Empirical studies of population dynamics arguably provide the strongest evidence for the 

broad benefits of increased genetic variation for population viability. Numerous studies have 

almost universally found that populations with higher genetic variation have increased population 

growth and viability (63). For example, lower genetic variation was associated with reduced 

population growth in alpine ibex (3) and increased local extinction in Glanville fritillary butterflies 

(2). Inbred laboratory lines of animals, which quickly lose genetic variation, often become extinct 

substantially more rapidly than control lines (64, 65). Additionally, the infusion of genetic 

variation via natural (66) and facilitated immigration (‘genetic rescue’) nearly always increases 

population growth (35, 36, 67, 68) either by masking of deleterious recessive alleles, or by 

infusing adaptive genetic variation. 

The collapse of the Isle Royale wolf population after a mainland male immigrated to the 

small population has been interpreted as a counter-example to the efficacy of genetic rescue (8). 

However, detailed documentation indicates that results from this unusual system are unsuitable as 

a general example of the likely demographic outcome of genetic rescue attempts (67, 69, 70). The 

immigration of only a single male into Isle Royale makes is unusual in the context of managed 

genetic rescue attempts which typically involve translocation of multiple individuals into a small 

population, e.g., (71-73). The single migrant male wolf dominated and increased reproduction, 

resulting in genetic rescue (an increase in population size following outbreeding). However, his 

extremely high reproduction resulted in very high inbreeding within two generations and the 

subsequent dramatic population decline (67, 69, 70). This male was likely just an opportunistic, 

successful migrant from the nearest population. It is unclear whether he carried an exceptional 

number of deleterious alleles that drove the subsequent decline, or if inbreeding following 

exceptionally high reproduction of any individual would have led to a similar demographic 

outcome. 

Recovery of some populations from severe bottlenecks, and persistence of some 

populations despite small Ne and low genetic variation is often cited as a challenge to the idea that 

low genetic variation and inbreeding reduce population viability (6, 8, 9, 11, 74-77). Soulé (5) [p. 
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178] pointed out the fundamental flaw of this argument, which he referred to as the “fallacy of the 

accident” nearly 35 years ago: the only observable populations that have experienced bottlenecks 

are those that survived. The potentially numerous populations that went extinct under similar 

conditions are unobservable. Counting extant, genetically depauperate populations is therefore an 

unreliable metric of the extinction risk posed by lost genetic variation and inbreeding. Theoretical 

population genetics and population ecology both predict that some populations will survive 

bottlenecks, and some lucky ones will persist for long periods at small population size. However, 

such cases are likely the rare exception, the lottery winners so-to-speak (5, 67). 

The most immediate threats to small, genetically depauperate populations are demographic 

stochasticity and inbreeding depression. However, long term population persistence will in most 

cases require populations to adapt to environmental change (e.g., climate change, novel diseases, 

invasive species, etc.) (44, 78). Rapid adaptation to new conditions is possible, but requires 

sufficient genetic variation and relatively large population size (53, 79). All of the material above 

highlights the fundamental importance of maintaining large, connected, genetically diverse 

populations. Long term population viability requires having both manageable genetic load and 

adaptive potential associated with genome-wide genetic variation. 

4. Simulation-based inferences of the effects of genetic variation and inbreeding on 

population viability 

Simulation-based studies showed long ago that inbreeding depression can substantially increase 

extinction risk (23, 80). However, our increasing understanding of deleterious mutation parameters 

(e.g., deleterious mutation rates, and the distribution of fitness effects [DFE]) combined with the 

availability of sophisticated, user-friendly simulation software (81) will likely advance our 

understanding of inbreeding depression and purging within the field of conservation. 

While there is much to learn about deleterious mutation parameters, a lot is known about 

the most important elements. First, deleterious mutations arise frequently (15, 16, 82-84), and 

large effect deleterious alleles appear to be a major driver of inbreeding depression (14, 85-87). 

For example, lethal alleles arose via mutation at a rate of ~3% per diploid genome in Drosophila 

(14). Inbreeding depression appeared to be largely due to highly deleterious alleles originating in a 

subset of pedigree founders in sheep and mice (86, 87). Lethal and other large effect deleterious 

alleles are frequently observed in small natural populations, humans, and model organisms (14, 83, 

85, 88-90). The majority of humans and Drosophila likely carry one or more recessive lethal 
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alleles (85, 89, 90). Deleterious mutations appeared at a rate of U=1.2 /diploid genome/generation 

in Drosophila (15) and U = 1.6 in hominids (16). Mutation accumulation studies show that the 

DFE for deleterious mutations is strongly bimodal, with most mutations having small to moderate 

effects (e.g. |s|<0.25) and a minority being lethal or semi-lethal (82). 

Second, the degree of dominance (h) is strongly related to mutation effect size. Direct 

observation of dominance effects in yeast and Drosophila suggest that nearly neutral deleterious 

mutations are slightly recessive on average (h slightly less than 0.5), and highly deleterious 

mutations (e.g., |s|>0.25) are nearly fully recessive (h very near zero), with h declining 

exponentially as s increases in size (14, 91, 92). There is still much uncertainty regarding 

deleterious mutation parameters (see discussion below). However, the best available information 

suggests that reasonable values of U are >1, the DFE is strongly bimodal, and dominance declines 

substantially with increasing size of s. These findings guide the simulations presented above 

(details in SI Appendix). 

Recently, results from genetically explicit simulations were used to argue that genome-

wide genetic variation is of little importance to population viability, and that purging is likely to 

prevent extinction (8, 11, 74). However, these studies excluded large effect deleterious mutations 

(SI Appendix Fig. S2) and assumed values of U that were between 2.6 and 92.3 times lower than 

the best estimate of U in Drosophila (Table 1). As a result, these models (8, 11, 74) produce 

substantially weaker inbreeding depression (<0.05 to approximately 1 lethal equivalent) than 

observed in real populations, where the median number of lethal equivalents for juvenile survival 

in captive mammals was 3.1 (93), and 12 for total fitness in wild mammals (23) (SI Appendix Fig. 

S3). There is substantial uncertainty in deleterious mutation rates, and the DFE, particularly for 

non-model organisms. However, the discrepancy between the assumed mutation parameters and 

the resulting inbreeding depression in the aforementioned studies (8, 11, 74) and the best available 

empirical estimates (Table 1, SI Appendix Fig. S3), yield results that underestimate the importance 

of genetic variation in conservation, and the efficacy of genetic rescue as a tool in conservation. 

5. Is the relationship between genetic variation and conservation status informative of the 

importance of genetic variation to population viability? 

It has been suggested that a weak relationship between genetic variation and conservation status 

(e.g., IUCN Red List) means that genome-wide genetic variation is uninformative of extinction 

10 
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risk (11). However, this relationship is not universally expected, even though extinction risk is 

strongly affected by genome-wide genetic variation. 

First, a lag is expected between reduced population size and the loss of genetic variation. 

Most threatened populations initially decline due to non-genetic factors (e.g., habitat loss, disease, 

climate change). Thus, multiple generations are required for a substantial reduction in genetic 

variation, even after severe bottlenecks (Fig. 2A). Threatened populations that became small due 

to non-genetic factors may still have high genetic variation due to this lag. Second, failing to 

control for other factors that influence genetic variation (e.g., Ne, dispersal, generation time, and 

mutation rate (11)) can obscure the relationship between genetic variation and conservation status. 

In contrast, a study controlling for phylogeny (a proxy for the aforementioned confounding 

factors) showed a significant relationship between genetic variation and conservation status (94). 

Differences among studies in the measures of genetic variation can further obscure true 

relationships between genetic variation and conservation status. Estimates of genetic variation for 

different species used in comparative studies vary widely in the number of sampled individuals 

and populations, and in the regions of the genome analyzed. Some studies estimate species-wide 

genetic diversity from a single individual (11, 95, 96) and compare different genetic data types 

across species (6, 96). Using single genomes to estimate species-wide genetic diversity is 

problematic because the individuals chosen may not be representative of the species as a whole 

(e.g., captive individuals (95)). Rather, multiple individuals and populations are necessary to 

accurately reflect a species’ distribution of genetic variation (97, 98). Additionally, estimates of 

genetic diversity are affected by reference genome quality (99), mapping bias (100, 101), the 

methods used to measure genetic variation (e.g., whole genome sequencing, RNAseq, RADseq), 

and bioinformatics approaches (98, 99). Thus, sampling, genetic markers, and analyses should be 

standardized when measuring the relationship between genetic variation and conservation status. 

Lastly, IUCN Red List status is an imperfect index of extinction risk because it is a 

subjective measure of population viability. The IUCN Red List is important for monitoring 

biodiversity, but the guidelines used to categorize threat levels within the Red List are subject to 

user interpretation, which can lead to inconsistent assessments (102-106). The imperfect 

relationship between IUCN Red List status and extinction risk means that Red List status is an 

inappropriate surrogate for extinction risk in assessing the relationship between genome-wide 

diversity and extinction risk. Together these issues suggest that the weak relationship between 
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genetic variation and conservation status has little bearing on the importance of genome-wide 

genetic variation for extinction risk. 

6. What is the role of functional genetic variation in conservation? 

The widespread availability of genomic data for non-model organisms has rapidly advanced our 

understanding of the genetic basis and evolution of fitness-related traits in natural populations, 

e.g., (107-111). This revolution has raised the question of how to effectively integrate functional 

genetic information into conservation practice (112-115). It has repeatedly been suggested that 

genetic assessment and management of threatened populations should be focused on variation at 

particular loci that affect particular fitness traits (11, 116-118). However, such gene-targeted 

conservation approaches are always difficult, and prone to failure for several reasons. 

First, understanding the genetic basis of fitness remains extremely complicated and 

challenging (112, 114). While some important traits in natural populations are affected by loci 

with very large effects, most traits are determined by many small-effect loci (119-121). A 

comprehensive understanding of the genetic basis of such traits is out of reach for non-model 

organisms (122). To accurately understand the locus-specific effects on a trait and fitness requires 

information on dominance and pleiotropy, epistasis, genotype-by-environment interactions, and 

the amount of linkage disequilibrium with other loci influencing the trait or other fitness 

components (112). These factors are expected to vary among traits and to differ for the same trait 

among species and potentially among populations within a species, e.g., (107). Therefore, 

substantial effort is necessary to understand the conservation relevance of a particular genetic 

variant and predict whether the benefits of gene-targeted conservation actions outweigh potential 

detrimental effects (112, 114). 

A classic example of the potential for undesirable outcomes of gene-targeted conservation 

management is the suggestion that genetic management of captive and wild populations should be 

designed around maintaining genetic variation at the major histocompatibility complex (MHC) 

(11, 116, 117, 123). The MHC has been studied in great detail in humans because of its 

importance in immunity, organ transplantation, and autoimmune disease, but its organization is 

poorly understood in most other vertebrates. Although there is strong evidence for its adaptive 

importance, some variants have detrimental effects, and the adaptive effects of other variants 

appear to be environmentally dependent (124). Detailed examination of the fitness effects of MHC 
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alleles and haplotypes is necessary to determine how much maintaining MHC variation enhances 

fitness. 

Additionally, as highlighted multiple times over the last 35 years (112, 125-129), basing 

conservation management on a small subset of loci risks increasing the loss of genetic variation 

elsewhere in the genome. Such efforts would be counterproductive unless the gain in mean fitness 

associated with gene-targeted management is greater than the loss in fitness associated with lost 

genome-wide genetic variation (112). This highlights the challenges and pitfalls of gene-targeted 

conservation. When recommendations for maintaining genome-wide genetic variation versus 

particular adaptive variants are in conflict, a cost-benefit analysis of the two approaches should be 

performed and a composite solution identified (112). Recent cases where genomic analyses have 

revealed that large effect loci play a key role in traits of conservation importance, e.g., (107, 108, 

110, 130) will be the first to empirically test the efficacy of gene-targeted conservation 

approaches. 

Discussion 

Genomic data should be used to challenge findings from population genetics theory and previous 

empirical data that form the basis for genetic management of small populations. Recent genomic 

studies provide useful fodder to determine how to effectively use genomic data to improve 

conservation in ways that were previously impossible. Examples are emerging of how 

understanding functional genetic variation could improve recommendations to conserve imperiled 

populations (107, 108, 110, 130), making genomic data more useful for conservation than ever 

before. However, genomic data have not discredited the decades worth of evidence that inbreeding 

depression, mutational meltdown, and loss of adaptive potential are major threats to conservation. 

Identifying genetic variants that affect fitness traits undoubtedly advances understanding of 

the genetic basis of adaptation, and that is important in itself (131). However, placing conservation 

priority on a small, apparently adaptive portion of the genome ignores what may be the vast 

majority of variation elsewhere in the genome that will fuel adaptation to unpredictable future 

conditions (112, 114, 125, 126). This approach is reminiscent of the “adaptationist programme” 

that Gould & Lewontin (132) criticized >40 years ago for being overly enamored with adaptive 

explanations for interesting traits (‘spandrels’) without considering that they might have arisen by 

accident, and that they are but one part of the whole, complex organism (114). Now, as then, we 

should avoid the temptation to place undue priority on putatively adaptive loci (‘molecular 
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spandrels’ (133)) without first considering the rest of the genome. Our inability to predict future 

changes in genotype-by-environment interactions should lead us to recognize the importance of 

genome-wide genetic variation (including presently neutral variation), and more importantly, the 

factors that make it possible – large livable habitats and natural patterns of connectivity among 

them. Conserving genetic variation across the whole genome is almost certainly the most reliable 

approach to conserve the genetic variation that matters. 

We know of no convincing evidence that supports abandoning the focus on genome-wide 

genetic variation in exchange for a focus on functional variation. The recent simulation studies that 

have been used to discount the importance of genome-wide genetic variation in conservation (8, 

11, 74) are based on assumptions that are inconsistent with the preponderance of empirical data on 

the genetics of inbreeding depression and its effect on population viability (see above). Some 

small populations may not suffer strong inbreeding depression, and some may not rebound 

following the introduction of genetic variation. However, as pointed out in the formative years of 

conservation biology, we must resist the temptation to dismiss the extinction risks associated with 

lost genetic variation in small populations (5).  

Although population genetics theory has done a remarkably good job of predicting patterns 

now observable in genomic data, many questions remain unanswered that will improve the utility 

of genomic data in conservation. For example, how prevalent is soft selection? The presence of 

soft selection could help explain some of the instances where populations persist for long periods 

despite inbreeding (59, 60). How much do U and the distribution of fitness effects for deleterious 

mutations vary among taxa? U may be rather consistent within some taxonomic groups (e.g., 

mammals) where the number of genes is strongly conserved (134). Nevertheless, variation among 

taxa in gene number, mutation rate, and the amount of intergenic DNA that is subject to 

deleterious mutation is an important consideration for assessing the fitness effects of inbreeding. 

Lastly, while it is clear that the distribution of mutation fitness effects is bimodal (82), 

understanding the specific shape of this distribution, and how much this varies among taxa, is 

important for our understanding of the extinction risks associated with small population size and 

inbreeding. 

Genomic data will undoubtedly continue to be used to revisit and refine insights gained 

since genetics was first applied to conservation and to understand the extinction process (4, 5, 46, 

135). So far, genomic data have reinforced earlier findings showing that genome-wide genetic 

variation is key to population viability. Given the increasing rate of habitat loss and fragmentation, 
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failing to recognize and mitigate the effects of lost genome-wide genetic variation would only 

exacerbate the biodiversity crisis. 
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Glossary: 
Adaptive potential: The ability of a population to evolve adaptively in response to selection. 
Usually measured as narrow sense heritability (the proportion of phenotypic variance attributed to 
additive genetic effects). 
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Drift load: The reduction in mean fitness of a population due to homozygosity for deleterious 
alleles. 
F: The individual inbreeding coefficient: the identical-by-descent fraction of an individual’s 
genome. 

Genetic load: The reduction in fitness due to all genetic effects arising from both segregating and 
fixed deleterious alleles. 

Genetic rescue: Increase in population growth or reduction in genetic load arising from the 
immigration of individuals with new alleles. 

h: The dominance coefficient. A derived allele is recessive when h=0 (heterozygous genotypes 
have the same mean fitness as homozygous wildtypes), and dominant when h=1 (heterozygous 
genotypes have the same mean fitness as homozygous derived allele genotype), and additive when 
h=0.5 (heterozygous genotypes have fitness midway between the alternative homozygous 
genotypes). 

H: Heterozygous fraction of an individual’s genome. 

Hard selection: Where an individual’s absolute fitness depends only on its phenotype or genotype 
and is independent of the phenotypes or genotypes of other individuals in the population. 

Identical-by-descent: Two segments of DNA are identical-by-descent when they both descend 
from a single haploid genome in a recent ancestor. 

Inbreeding: Mating between relatives. 

Inbreeding depression: Reduced fitness of individuals whose parents are related. 

Inbreeding load: A measure of the potential for inbreeding to reduce fitness, measured by the 
number of Lethal equivalents, which is a set of alleles that would on average cause death when 
homozygous. 

Mutational meltdown: Extinction of a population due to the synergistic interactions of population 
decline, genetic drift, and the accumulation of deleterious alleles. 

p : Nucleotide diversity: expected proportion of nucleotide differences between randomly chosen 
pairs of haploid genomes in a population. 

Purging: Increased selective elimination of deleterious, partially recessive alleles that are exposed 
to purifying selection via inbreeding. 

Soft selection: Selection where an individual’s fitness depends on its phenotype or genotype 
relative to others in the same population. 
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Figure Legends 

Figure 1. Relationship of nucleotide diversity (�) with the inbreeding load (lethal equivalents) 

(A), drift load (B), and additive genetic variance in a quantitative trait (Va) (C). The data are from 

the 1,000th generation of 10 simulated populations with 9 different constant effective population 

sizes (Ne). 

Figure 2. Genetic effects of bottlenecks with and without immigration. Nucleotide diversity (�) 

(A), number of lethal equivalents (B), drift load (C), and the additive genetic variance in a 

quantitative trait (Va) (D) are shown for 100 generations after a simulated bottleneck in isolated 

populations (orange) and with 5 immigrants every 2 generations up to generation 50 (blue). 

Population size was held constant at Ne=1,000 for 1,000 generations before the bottleneck and then 

at Ne=25 starting at generation 0. The thin lines show the results from 25 replicates. The thick lines 

represent the mean across 25 replicates. Immigrants during the first 50 generations are from a 

population with Ne=500 that split from the receiving population the generation of the bottleneck. 

Details of the simulation model and parameters are provided in the SI Appendix. 

Figure 3. Population viability during bottlenecks from carrying capacity K=1,000 (left column) 

and K=500 (right column) to K=100. The bottlenecks were 2 (A), 10 (B), and 50 (C) generations 

in length. The black line shows the proportion of extant populations. Gray lines show population 

size for each of 50 replicate simulations in each scenario. 
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Table legends 

Table 1. Deleterious mutation rates used in previous simulation-based analyses of inbreeding 

depression and genetic rescue. 
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